DyNAMIC INTERACTION FACTORS FOR
FLOATING PILE GROUPS

By George Gazetas,' Ke Fan,? Amir Kaynia,* and Eduardo Kausel*

ABsTRACT: A set of di graphs of complex-valued dy-
mamic infeaction factors versus requency s prmnla:d for vertical, horizontal, and
rocking f le. These readily applicable graphs
have b developed with a ri ical for two ideal-

ized soil profiles (a homogeneous half-space and a half-space with modulus pro-
portional to depth) and threepile separation distances (3. 5. and 10 pile-diameters)
A wide range of values has been parametrically assigned to pile slenderness and

‘The results are tength to gain valuable insight
into the nature of dynamic pilc-soil action. Geotechnical and carthquake
cngincers can use the presented graphs exactly as they use the classical interaction
factors for static deformation analysis of pile groups.

INTRODUCTION

Under static working loads, lhe displacements of a pile increase if this
pile is located within the d d of gl g pile. For a pile
group, this leads to anii ion between individual piles, the

of which are: (1) The overall stiffness of the group is smaller than the sum
of the individual-pile stiffnesses; and (2) the sharing among individual piles
of the load applied at the p|le cap is generally uneven, with the corner
piles loaded the most and center piles loaded the least.

In current geotechnical practice, when the displacement of a pile group
is of interest, such pile-soil-pile intcraction effects are often assessed through
the use of i factors, by superimposing the effects of two piles at
a time (Poulos 1971). An mlemcuun factor a is defined as the fractional
increase in deformation (i.e., deflection or rotation) at the head of a pile
due to the presence of a slmllarly loaded adjacent pile. Thus, if the stiffness
of a single (solitary) pile under a given ty!)e of loading is KO, then a load
P will produce a deformation u = P/K™. If two identical piles are each
subjected to a load P, then each one will deform by an amount u given by

gl

The value of a depends, of course, on the type of loading (axial or lateral),
the spacing of the two piles, and the soil and pile material and geometric
properties.

The popularity of this superposition method stems from the availability
(in published form) of fairly complete sets of static interaction factors,
developed by recourse to integral equation and finite element formulations
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(Poulos 1968, 1971; Butterfield and Banerjee 1971; Poulos and Davis 1980)
and to simple physically sound approximations (Randolph and Wroth 1979).

Unfortunately, the static interaction factors are not applicable to the
dynamic analysis of pile groups, except perhaps at very low frequencies of
oscillation. Indeed, dynamic studies of pile groups (Wolf and Von Arx 1978;
Waas and Hartmann 1981; Kaynia and Kausel 1982; Sheta and Novak 1982;
Nogami 1983; Kagawa 1983; Tyson and Kausel 1983; Roesset 1984; Dobry
and Gazetas 1988) have demonstrated that the dynamic response of pile
groups may differ substantially from their static response, in that the dynamic
group efficiency exhibits a strong sensitivity to frequency and may attain
values well above unity. (Dynamic group efficiency is defined as the ratio
of total group dynamic stiffness to the sum of the individual pile stiffnesses.)
Nevertheless, Kaynia and Kausel (1982) have shown that even for dynamic
loads, Poulos’ superposition procedure remains an excellent engineering
approximation, provided of course that dynamic interaction factors are used
for each frequency of interest. Today, despite the significant progress in
understanding dynamic pile group behavior, only a very limited number of
dynamic interaction factors have been published in a form readily accessible
to practicing geotechnical and earthquake engineers. In response to this
apparent need, a comprehensive set of dimensionless graphs of dynamic
interaction factors have been developed and are presented in this paper as
functi q for a practicall. icient range of key material and
geometric parameters. These graphs may be readily used in practice to
obtain estimates of the dynamic response of floating pile groups, for soil
deposits that could be modeled either as a homogeneous deep stratum or
a deposit with stiffness proportional to depth.

DEFINITIONS AND METHOD OF SOLUTION

Fig. 1 shows the system studied: two identical vertical free-head piles,
floating in a half-space with Young's modulus either constant E;, or pro-
portional to depth, E(z) = E,(L)z/L. The piles, of diameter d and length
L, are considered to be linear-elastic beams with constant Young’s modulus
E, and mass density p,. The soil is assumed to be a linear-hysteretic con-
tinuum with constant Poisson’s ratio v,, constant material density p,, and
constant hysteretic damping B,; unless otherwise noted, the following typical
values were assigned to these three parameters: v, = 0.40, B, = 0.05, and
p, = 0.70p,. However, the values of p, = 1.2p,, typical of hollow cylindrical
piles, and v, = 0.48, typical for saturated clays, are also given consideration.
Finally, § = the axis-to-axis spacing of the piles; and 8 = their angle of
“departure,” i.e., the angle between the line joining the pile centers and
the direction of loading (Fig. 1).

For two such piles, a pendent dynamic i ion factor,
a = a(w), is defined as
B dynamic displ. of pile 2 caused by pile 1

@)

static displacement of solitary pile 1 due to its own load °

in which displacement means translation or rotation. Five different kinds
of dynamic i ion factors are provided in this paper, depending on the
loading at the pile head and the type of deformation.

1. a, = interaction factor for vertical deflection under vertical loading.
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FIG. 1. Sketch of System Studied
2 o = i ion factor for hori deflection of frec-headed piles

under horizontal force loading.

3. a4y = interaction factor for rotation of free-headed piles under moment
loading.

4. o,y = @,y = interaction factors for horizontal deflection due to moment
or for rotation due to horizontal force of free-headed piles.

The results of the presented graphs of dynamic interaction factors were
obtained with a rigorous analytical-numerical formulation developed by
Kaynia and Kausel (1982) for the dynamic analysis of pile groups in a layered
half-space. In addition, the simplified analytical method of Dobry and Gaz-
etas (1988) and Gazetas and Makris (1991) was used in selecting suitable
dimensionless problem parameters, in assessing the effects of some of these
parameters, and in explaining certain trends observed in the rigorous results.

The Kaynia and Kausel (1982) formulation is in essence a boundary-
integral type method in which the Green’s functions, defining the displace-
ment fields due to uniform barrel and disk loads associated with pile-soil
interface tractions, are computed by solving the wave equations through
Fourier and Hankel transformations (Kausel 1981). These functions yield
the dynamic soil flexibility matrix, which is combined with the analytically
derived pile flexibility matrix, while compatibility of deformations at the
pile-soil interface is enforced. (No gap is allowed between pile and soil, an
assumption that might not be appropriate in the case of strong excitation
and certain types of soils.)
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DIMENSIONLESS PROBLEM PARAMETERS

The two key dimensionless parameters that have been shown in the lit-
erature to largely control the value of all interaction factors are: (1) The
frequency factor @, = (wd/V), where Vi = a characteristic value of
the soil §-wave velocity profile (in this paper V3 is taken equal to V, for
the homogeneous and to V,(/.) for the inhomogeneous profiles); and
(2) the pile spacing-to-diameter ratio (hereafter called simply the spacing
ratio) s/d.

The curves of the interaction factors as functions of the frequency factor,
ie., a = a(a,), exhibit peaks and troughs occurring at different locations
for different values of the spacing ratio s/d [e.g., Kaynia and Kausel (1982)].
The picture clears up significantly when an alternative frequency parameter

s ws

b= ly= == e e SR e R
0 y a R

is used in place of 4. Indeed, according to the aforementioned simplified

method of Dobry and Gazetas (1988) as a first approximation, interaction

factors take the form

-1

D e el T )

« \/7((1) u(p( v ) exp(—v> ..................... )

where i = \/—1; and V is equal to, or a multiple of, V*, depending on
the mode of deformation and the type of soil profile. The first two terms
in (4) constitute the amplitude, while the last term controls the undulations
with frequency, of the interaction factor. It is evident that the amplitude
| decreases with increasing spacing ratio s/d and with increasing soil hys-
teretic damping B, and frequency parameter b,. On the other hand, the
fluctuations of « with frequency depend solely on the frequency parameter
b,. Hence, the graphs of this paper are in the form « = a(by).

The third most important problem parameter appears to be t called
angle of “departure” 8 for the lateral interaction factors. Following Poulos
(1971) and Kausel and Kaynia (1982), results are presented here only for
8 = 0° and 6 = 90°. For any other angle, the interaction factors can be
obtained with sufficient accuracy from the following relationship:

a(8°) = a(0°)cos?® + a(90°)Sin*0 .. ... )
The vertical interaction factor is, of course, independent of 8 due to
symmetry.

The two other parameters that have been found to have an influence
(although rather secondary, for practical purposes) on the interaction factors
are: (1) The ratio of the “effective” pile modulus to soil Young’s modulus
E,/E, ot E,JE/(L) for the homogeneous or inhomogeneous profiles of Fig.
1; and (2) the pile slenderness ratio L/d.

Note that the presented graphs, although derived for circular piles of solid
cross section with diameter d, can also be used for pipe piles and concrete-
filled steel pipe piles (Gazetas and Dobry 1984). To this end, an appropriate
“effective” modulus E, is chosen such that
for axial deformations:




for lateral deformations:
_(ED,

4

»

where (EA), and (EI), = the axial and bending rigidities of the actual pile
section. [For example, for a steel pipe pile: (EA), = Eseal w3 — ) and

(ED), = Eqealmry — w4 ro = dl2 = external radius, and r; = internal
radius of the pipe.]

GRAPHS

Figs. 218 show the real and imaginary parts of the complex-valued dy-
namic interaction factors as functions of frequency, in the following dimen-
sionless parametric form:

@ = Real(o) + i . Imaginary(e) N
cufpt g B B L
o= u(bu, OB Ty d) ............................. (7b)

Organization of the graphs and the considered ranges of problem parameters
are presented in Table 1. Note that b, is given values up to five, which
would be sufficiently high for most applications, even when pile spacing
equals 10.

The following characteristic trends are worthy of note in the graphs of
Figs. 2-18.

Dynamic interaction factors are quite different from the respective static
interaction factors, to which they converge only at zero frequency. It is
apparent that use of static interaction factors in estimating the dynamic
response of pile groups must be avoided as it would, in general, worsen
rather than improve the prediction, i.e., one would be better off ignoring
interaction altogether.

While static interaction factors are invariably positive numbers smaller
than unity, the dynamic factors are complex with real and imaginary parts,
Re(a) and Im(a), that fluctuate with frequency, achieving positive and
negative values. As the aforementioned simplified method (4) has antici-
pated, this frequency dependence of a is indeed almost entirely controlled
by the frequency parameter b,. Of particular significance for the response
of pile groups are the negative values of Re(e). Such values arise whenever
waves originating from pile 1 with a certain phase arrive at a neighboring
pile2inan exactly opposite phase, thereby inducing displacements v;» which
are opposite to the displacements vz, due to this pile’s own load. As a
consequence, in a pile group loaded, e.g., through a rigid cap, larger force
must be applied to pile 2 to enforce a certain displacement amplitude; thus,
the dynamic stiffness of the group increases and may achieve values well
above the sum of the individual stiffness of each pile (“efficiency” greater
than unity, in ished g hnical terminok 5

The soil Poisson’s ratio v,, and the soil-to-pile mass density ratio ,/0p
have no discernible effect on dynamic interaction factors. On the other
hand, the effect of soil hysteretic damping B, can be captured with the
simplified expression given in
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FIG. 2. Vertical Interaction Factor for: (a) Relatively Compressible Piles (E/E. =
1,000); (b) Relatively Rigid Piles (E,/E, = 10,000) in Homogeneous Soll (Lid = 20,
o, = 0.7, = 0.05,and v, = 0.4)

(@) [}
£p/Es(L)=50C 1/2=20 £p/E5(L}=5000 /=20

e

e

(Reat Part)

a, (imag. Part)

ws ws

Vi 7.0

FIG. 3. Vertical Interaction Factor for (a) Relatively Compressible Piles
(E//EAL) = 500); (b) Relatively Rigid Piles (E,/E,(L) = 5,000) in Nonhomogeneous
Soil (L/d = 20, pJp, = 0.7, = 0.05,and v, = 0.4)
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FIG. 4. Effect of L/d on Vertical Interaction Factor for: (a) Relatively Compressible
Piles (E,/E, = 1,000); (b) Relatively Rigid Piles (E,/E, = 10,000) in Homogeneous
Soil (s/d = 5, p/p, = 0.7, B = 0.05, and v, = 0.4)
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FIG. 5. Effect of L/d on Vertical Interaction Factor for: (a) Relatively Compressible
Plles (E,/E,(L) = 500); (b) Relatively Rigid Piles (E,/E.(L) = 5,000) in Nonhomo-
geneous Sail (s'd = 5, p/p, = 0.7, p = 0.05, and v, = 0.4)
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FIG. 6. Effectof £,/E, on Vertical Interaction Factor for Piles in: (a) Homogeneous
Soll; (b) Nonhomogeneous Soil (L/d = 20, s/d = 5, pJp, = 0.7, = 0.05, and v, =
0.4)
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FIG. 7. Factor for Plles in Ho-
mogeneous Soll (E,/E, = 1,000, Lid = 20, p/p, = 07, p = 0.05, and v, = 0.4):
(a) 6 = 0% (b) 6 = 90°
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1l Factor for Rigid Piles in
000, Lid = 20, p/p, = 07, p = 0.05, and v, = 0.4): @0 = 0%

090"

Piles in Non-

Factor for
homogeneous Soil (E,/E,(L) = 500, Lid = 20, p/p, = 07,8 = 005, and v, = 0.4):

(a) o = 0% (b) 6 = 90°

FIG. 9.
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FIG. 10. Factor for Rigid Plles in
neous Soll (E,,/E,(L) 5,000, Lid = 20, pjp, = 0.7, p = 0.05, and v, = 0.4):
(8) 0 = 05 (b) 6
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FIG. 11. Effect of L/d on i Factor for Rigid Piles
in: (a) Homogeneous Soil (E,/E, = 10,000); (b) Nonhomogeneous Soil (E,/E(L) =
5,000) (s/d = 5, p/p, = 0.7, 8 = 0.05, v, = 04, and 6 = 0°)
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FIG. 12.

Effect of £,/E, on Horizontal Interaction Factor for Piles in: (a) Homo-

geneous Soll; (b) Nonhomogeneous Soll (Lid = 20, sid = 5, p/p, = 0.7, 3 = 0.05,

v, = 0.4,and 6 = 0°)
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FIG. 13. Coupling

Factor for

mogeneous Soil (E/E, =
(a) 6 = 0% (b) 9 = 90°
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1,000, Lid = 20, pjp, = 0.7, = 0.05, and v, = 0.4):
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FIG. 14. Coupling | Factor for y Rigid Piles in

Soll (E,/E, = 10,000, Lid = 20, p/p, = 0.7, = 0.05, and v, = 0.4): (3) 6 =
(b) 6 = 90°
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FIG. 15. Coupling ion Factor for i ible Piles in Non-
homageneous Soil (E,/E,(L) = 500, Lid = 20, p,/p, = 0 7, B = 0.05, and v, = 0.4):
(a) 6 = 0° (b) 8 = 90°
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FIG. 16. Coupling Interaction Factor for Relatively Rigid Piles in Nonhomoge-
neous Soll (E,/E,(L) = 5,000, Lid = 20, p/p, = 0.7, 8 = 0.05, and v, = 0.4):
@) 6 = 0% (b) 8 = 90°

H
2
FIG. 17. Factor for Rigid Piles in

Soil (E,/E, = 10,000, Lid = 20, p/p, = 0.7, p = 0.05, and v, = 0.4): (a) 6 = 0%
(b) 0 = 90°
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FIG. 18. Rotational Interaction Factor for Rigid Piles in Nonhomogeneous Soil
[E,/E(L) = 5,000, Lid = 20, pJp, = 0.7, § = 0.05, and v, = 0.4): (a) 6 = 0%
(b) 6 = 90°

TABLE 1. Organization of Graphs of Dynamic Interaction Factors

Homogeneous Profile Nonhomogeneous Profile
Interaction | sid Lid £, sid E,E(L)
factors | 3,5, 10 | 10, 20, 40 | 200, 1,000, 10,000 | 3.5, 10 100, 500, 5,000
)] @ @) @) ©)
a, Fig.2 | Fig.4 Fig. 6 Fig. 6
@ 7 | Fign Fig. 12 Fig. 12
8 = e o
o = o | Fig. 13 - - A
Fig. 14 = = B
Qi Fig. 17 - = i
oB) _ & — (B, — 0.05)ws ®
«0.05) 77— || 99amescasacemsRobEERonay s 9000

where a(0.05) is obtained from the provided graphs, while as a first ap-
proximation, V is taken as the average (over depth) S wave velocity V,, or
the average Lysmer’s analog velocity, V., = [3.4/w(1 — v,)]V.. Specifically,
V =V, for the vertical interaction factor, and for the lateral interaction
factors when 8 = 90°, while V = V,, for the lateral factors when 6 = [
[see Dobry and Gazetas (1988)]. Evidently, the effect of damping may
become significant only at high values of the frequency parameter by, i.e.,
at high frequencies and/or large spacing ratios.
Under static and | diti vertical i

factors are
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generally greater than lateral interaction factors, and among the latter,
interaction factors due to moment loading are smaller than those due to
horizontal-force loading, while for rotation they are smaller than for dis-
placement. At intermediate and higher frequencies, however, due to the
observed undulations, this general picture may not be true, except perhaps
in a general average sense.

Vertical Interaction Factors

The pile spacing ratio s/d affects «, in two different ways: (1) By con-
trolling its static and low-fi i and (2) by i ing the
frequencies at which peaks and troughs occur. By contrast, for a homoge-
neous soil the amplitudes of those peaks and troughs are hardly influenced
by s/d; with inhomogeneous soil, the effect of s/d becomes appreciable only
for s/d exceeding five.

The stiffness and slenderness ratios, E,/E, [or E,/E,(L)] and L/d, are of
secondary importance. Specifically, the effect of L/d is appreciable at zero
and very low frequencies only for relatively rigid piles [i.e., E,/E, ~ 10,000
or EJE(L) =~ 5,000]. The effect of E,/E, or E,/E(L) is noticeable only
when these ratios attain very low values (of the order of 200 or 100, re-
spectively), i.e., in the lowest range of possible practical interest.

Under static and low-frequency conditions, the smallest «, values are

iated with the inhi 2 deposit. At and high fre-
quencies, however, inhomogeneity affects mainly the location and shape of
the peaks and valleys of a,, rather than their amplitude.

Lateral Interaction Factors

The spacing ratio s/d affects both the real and imaginary part of the
amplitudes of lateral interaction factors over the whole frequency range
studied. (This contrasts with the behavior of a,, the amplitude of which is
affected by s/d only at zero and very low frequencies.) One of the conse-
quences is that for s/d = 10, o, the largest of the lateral interaction factors,
attains at all frequencies very small values (e.g., less than 0.10 for E,/E, =
1,000), whereas the corresponding vertical factor a, for frequencies b, ex-
ceeding one, achieves for s/d = 10 essentially identical (relatively high)
values with those for s/d = 3.

The effect of the angle of “departure” 0 is twofold. First, the static and
low-frequency amplitudes of all lateral interaction factors decrease as 0
increases, e.g., a,;(90°) = 0.60a,,(0°). Second, at intermediate and high
frequencies, increasing the angle 8 does not produce a decreasing amplitude
of the peaks and valleys; however, the rate of fluctuation (of both real and
imaginary parts) of the interaction factor is faster for = 90° than for 6 =
0°, To provide a physical explanation of this effect, recall that according to
(4) of the i implified model, the ions of o are con-
trolled by ws/V, where V = the (average) wave velocity of the predominant
waves. For 8 = 90°, one pile sends to the other mainly S waves and, thus;
V = V, in a homogeneous deposit. For® = 0°, the two piles interact through
compression-extension, rather than shear, waves; such waves propagate at
an apparent phase velocity V = V,, [defined as Lysmer’s analog velocity
by Gazetas and Dobry (1984)]. In this case, V., = [3.4/n(1 — v)]-V, =
1.80V,, leading to rates of fluctuation ws/V, (for 8 = 90°) = 1.80 times
ws/V,, (for 8 = 0°), in accord with the observed faster rate of fluctuations
for 8 = 90°.

It is well understood that the slenderness ratio L/d plays no role in the
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lateral response of flexible piles, i.e., piles of which the length L exceeds
a “‘critical” or “‘active” length /. given by the following conservative expres-
sion (Gazetas 1991):

£N°F
L~ 24<E)

applicable for homogeneous soils. The part of the pile located below /. from
the top remains practically idle at all frequencies and, therefore, pile re-
sponse and pile-to-pile interaction are governed by /. and not L. Most
real-life piles, as well as the piles in our parametric study, are indeed “‘flex-
ible.” For example, with £,/E, = 1,000, the “‘active” length becomes I, ~
2d(1,000)% =~ 11.2d; thus, only the shortest of the considered piles, with
L = 10d, falls just below the limit for completely *‘flexible” behavior.

The obtained results (only some of which are plotted in Fig. 11) confirm
that L/d has no effect on lateral interaction factors for all but the decisively
“rigid” piles. Only the shortest and stiffest of the considered piles L/d =
10 and (E,/E, = 10,000) belong in that category, and thereby their o,
show some dlfferences from the single a,, function for all the other piles.

This last conclusion is also, in general, valid for the nonhomogeneous soil
profile. The “active™ length in this case is given by the following conservative
expression (Gazetas 1991):

-

0.20
I~ 2d<—2’) ............................................ (10a)
where

E, = E(d) = E(L) % .................................... (106)

For instance, the typical pile with L/d = 20 and E,/E(L) = 500 has an
{o =~ 2d(500 x 20)**° ~ 12.6d; thus, L > [, and this pile is “flexible.”
Almost “flexible” is the L/d = 10 pile, for which I, ~ 2d(500 x 10)**
11d. Again, only the stiffest and shortest of the considered piles [E,/E,(L) =
5,000 and L/d = 10] are decisively “rigid” piles: /. = 17.5d > 10d their
interaction factors a,, show some (small) differences in peak amplltudes
from those of a,, for the L = 20d and L = 40d piles.

The small frequency shift observed in Fig. 11(b) (as L/d decreases, peaks
and valleys move towards larger b,) is of absolutely no significance, being
merely an artifact of plotting versus by = ws/V,(L). Indeed, the reader
should appreciate that the exact value of V(L) is of no relevance to the
interaction of “‘flexible” piles. If a relevant wave velocity, e.g., that at one
diameter depth V,(d) = V,(L)-(d/L)"?, were to be used instead, this fre-
quency shift would disappear, since the abscissa would change to

p L\
v by (E) ......................................... (¢8))

and thus the interaction curves of the longer piles would move farther to

the right, thereby meeting the corresponding curves of the shorter piles.
Increasing the stiffness ratio £,/E, or E,/E,(L) produces an appreciable

increase in all lateral interaction factors under static and low-frequency
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loading. At higher frequencies, however, the increase is somewhat less
significant.

Note that, for static loading, Randolph (1977) has proposed an approx-
imate expression for e, which for homogeneous soil takes the form

N e 2
o,y =~ 0.28) E) (E) (VA ER)) os socasonn sbnanannhonios 5o (12)

and fits closely the zero-frequency results of this study.
The two rotational interaction factors, s and oy, attain very small
values for all but the closest possnble spacing ratios (A/d = 3). For static
the

loading, dolph (1977) proposed t g appp
iy = Q02 T 208, SRR R B R g (13a)
v ES ) 60060000006 8886 560660550 5550 B80aE6B8666080 400 040 (13b)

It appears that these relations hold approximately true even for dynamic
loading and could be recommended at least in routine practical applications.

CoNcLusioN

Graphs of dynamic interaction factors for vertical and horizontal dis-

placements and rotatlons of free-head piles embedded in homogeneous and

p: have been d. These results should be

of practical value in the seismic design of pile foundations and in the seismic

analysis of soil-structure interaction. The presented graphs can be readily

applied by engineers already familiar with the use of static interaction factors
in the design of pile groups.
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